Production of Positron-Gamma Emitters for Multiplexed PET (mPET) Imaging

J. L. Herraiz^a, E. Lage^a, V. Parot^a, S. Dave^a, J.M. Udias^b, J.J. Vaquero^c, A. Muñoz^d, L. M. Fraile^b

^a Madrid-MIT M+vision Consortium, Massachusetts Institute of Technology, Boston, MA, USA

^b Grupo de Fisica Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain

^c Universidad Carlos III de Madrid, Madrid, Spain.

^d Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Madrid, Spain

email: herraiz@mit.edu

ABSTRACT: We investigate the production and use of positron-gamma emitter isotopes of interest for enabling multiplexed PET (mPET) imaging of at least two radionuclides. The radioisotopes ⁶⁰Cu ($T_{1/2} = 23$ min), ^{52m}Mn ($T_{1/2} = 21$ min) and ^{94m}Tc ($T_{1/2} = 53$ min) can be used to label molecules of high clinical and preclinical interest. These radionuclides were produced by bombardment on target foils of natural Nickel, Chromium and Molybdenum respectively, using a 10 MeV proton beam from a linear accelerator. After activation, the foils were analyzed by a Ge spectrometer. The activity generated was in agreement with the expected cross-sections and the isotopes present in the samples. Finally, two foils activated with ^{94m}Tc were imaged in a small-animal PET scanner together with a mouse injected with ⁶⁸Ga-DOTATOC. The mPET acquisition and reconstruction software made it possible separating both images: ⁶⁸Ga-DOTATOC biodistribution in the mouse and ^{94m}Tc in the foils. These results show the feasibility of production of these isotopes with moderate energy proton beams, as well as the possibility of using these isotopes for mPET.

Key Words: PET, multi-isotope PET, mPET, isotope production, proton-gamma emitter